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LATERAL TORSIONAL STABILITY OF MEMBERS WITH
LATERAL RESTRAINTS AT VARIOUS LOCATIONS BETWEEN THE
SUPPORTS

F.5.K. Bijlaard' and H.M.G.M. Steenbergen”

ABSTRACT

This paper provides a general procedure to determine the elastic critical (Euler)
lateral torsional buckling moment of a member with lateral restraints at various locations
berween the supports. The mathematical procedure to solve the eigenvalue problem is
presented and some design examples are presented. The effectiveness af the locarions on the
member where the lateral restraints are applied, together with the effecis of the flexibility of
the restraints on the bearing capaciry of the member is studied.
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L INTRODUCTION

When designing members in bending, the designer has to pay much attention to the
lateral torsional stability of the member. In modern codes, like the Eurocode 3 for Steel-
structures [1], attention is given to the verification of the structural safety of members with re-
spect to lateral torsional stability of members in bending. This is expressed in the so-called
unity-check. where the ratioc between the effects of the loading on the member and the
capacity of the member, with respect to lateral torsional stability, needs 1o be smaller than
unity or at maximum equal to unity to prove the stability of the member in bending.
Determining the effects of the loading on the member is day-to-day business for the designer.
However, determining the capacity of the member with respect to lateral torsional stability
leads many times to a lot of work even in the case of determining this capacity via the clastic
critical (Euler) lateral torsional buckling moment of the member. The elastic critical (Euler)
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lateral torsional buckling moment of the member is dependent on many parameters governing
the phenomena. Many code writers consider the determination of the elastic critical (Euler)
lateral torsional buckling moment of the member as a pure textbook related activity and from
the code only a general relerence to literature is given, Now here lies the problem for the
designer. What literature is correct, which solution is applicable to the design situation at
hand and what 1o do in cases the designer cannot find a sufficiently suitable solution for his
design case.

2. PROGRAM DESCRIPTION
2.1 General

With Eurccode 3 the verification of the structural safety of members with respect o
lateral torsional stability may be done by using the elastic critical (Euler) lateral torsional
buckling moment of the member. This moment is defined as the maximum moment in the
member due to the loading for which elastic critical instability occurs. The verification
depends mainly on the solution of an eigenvalue problem. In practice this means that a
multiplication factor for the loading on the member should be determined for which (Euler)
lateral torsional instability occurs.

In some papers on stability the maximum (Euler) sagging moment is calculated. To
gain a reliable verification rule this should be transferred to the maximum moment in the
member,

2.2 Theoretical background

For the derivation of formulae to determine the theoretical clastic (Euler) lateral
torsional buckling moment, several methods are suitable. One of the options is an energy
methed based on the Ritz method [2], [3]. According to this method the following equation
holds:

EII=EH,+EHg+ar|P=:] i
with:

STL. = | [EL, v" 8v" + El, @" 80" + GI, ¢ B')] dx (2)

all, = JIM (v &' + i &™) dx (3)
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In equation (1) 8I1 is the variation of the total energy IT (virtual work). The total
variation of the energy related to lateral torsional buckling due to a disturbance of the state of
equilibrium is equal to the virwal work 811, due to bending out of plane, warping and torsion,
the virtual work 8I1, due to the geometrical first order non-linear effects and the virtual work
&I, due to the loading. The parameters v and ¢ are the out of plane displacements and the
rotation around the longitudinal axis of the member, respectively. EX, is the out of plane
bending stiffness, Ef, is the warping stiffness and &F, is the wrsional stiffness of the beam.
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Into equation (1) any arbitrary displacement field (displacements as well as rotations)
can be substituted and this equation can subsequently be solved. Dependent on the
displacement field chosen this results in a set of equations, which forms an eigenvalue
problem. The quality of the solution depends heavily on the chosen displacement field. The
better the chosen displacement field agrees with the real lateral torsional buckling mode the
better the solution will be,

In the program for the displacements as well as for the rotations a sinus series is
chosen. When sufficient terms of the sinus series are taken into account every possible mode
for the displacement field can be approached accurately. In the program the number of terms
of the sinus series can be set.

These sinus series are only used for the displacement field of the member. Using a
sinus series for the loading on the member is not suitable, because wo many terms would be
necessary for an accurate description, while it can be done directly with an exact description.
This direct way of describing the loading has as disadvantage that the equations become
rather large and complex,

When the equations for the several terms are completely written, two matrices follow,
The first is the linear stiffness matrix S;. The second is the first order non-linear stiffness
matrix Sz, which is dependent on the level of the loading. In this way the determination of the
theoretical elastic (Euler) lateral torsional buckling moment is reduced to solving the
following eigenvalue problem.

(S1+AS)v=0 (3)

From the solution of equation (3) the critical loading and the deflected shape of the
beam, at the moment lateral torsional buckling occurs, follow.

Because it is an eigenvalue problem, all the lateral torsional buckling loads and lateral
torsional buckling modes are obtained. The number of modes is equal to the number of
degrees of freedom of the chosen displacement field. The lowest positive eigenvalue produces
the decizsive theoretical elastic (Euler) lateral torsional buckling moment with the
corresponding lateral torsional buckling mode,

In deriving the method the assumption that the shape of the cross section remains the
same before and after lateral torsional buckling of the member occurs, is used. Further all
classic assumptions for an Euler approach are used, such as perfect linear material behaviour,
no residual stresses in the member, no initial deformations in the member, etc.

2.3 Relation between M, determined according to the numerical model and theoritical
solutions

According to BEurocode 3, the theoretical solution M can be described in case of
double symmetrical cross sections and no end fixities at the supports, as:

J'EE.IT |I 4’” G! +(C1,_} _C.- )
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The C) and € factors can be taken from literature for specific cases. So the elastic
lateral torsional buckling moment is available only for those cases. The computer program
described produces the elastic lateral torsional buckling moment for any double symmetric
prismatic beam, loaded by any loading causing bending about the major axis and with lateral
restraints at various locations.

The determination of C; goes as follows. Assume that the loading on the beam works
at the centroidal axis. In such a sitwation the contribution of the C; factor, accounting for the
effect of the loading peint on the beam, equals zero. From the equation with only C,
unknown, €y can be calculated. Now the loading can be placed at any point lower or higher
than the centroid of gravity of the cross section and because C) is already known, from this
one equation C; can be calculated.

In studying the relationship between the factor C) and the end moments, at the beam
supports, an influence of the beam length is observed. In case that the end moments produce a
constant moment in the beam (f = M /M = 1,0) the influence of the beam length is absent. In
case that the end moments produce a counter flexure in the beam (p = MiM: = -1,0) the
influence of the beam length is about 10%. In figure 1 this influence is presented. In literature
this spread in C-values is mostly motivated by the inaccuracy of the calculation model used.
However from this study it is found that this spread is caused by the assumed constant ratio
between torsion and warping in the formula for M. For practical design the span to height
ratio for a beam can be taken as 30.

Fig. 1 - Spread in Cy-values

From calculations, with a broad range of thin walled as well as thick walled profiles, it
is found that for general use of the C; factors, they need to be determined for the situation that
the loading acts at the centroid of one of the flanges of the cross section.
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3. BEAMS WITHOUT LATERAL RESTRAINTS BETWEEN THE SUPPORTS

M, =M M,=M

Fig. 2 - Beam with distributed loading and end moments

For the situation as shown in fig. 2 the C) value 18 calculated dependent on the factors
B and B, where [ is the ratio-of the end moments at the supports of the beam and:

B= i (7
8M|+ql’

The results are presented in Fig. 3. From Fig. 3 it can be observed that in the region of
about f = -0,5 the shape of the Cr-surface is very steep. This region represents the transition
of flange with the largest sideway displacement from the upper flange to the lower flange.
This steep C) surface has a disadvantage. A small deviation in the end moments (hogging
moments) of the beam causes a large deviation of the Cy-value and so of the elastic critical
lateral torsional buckling moment. For real proportional loading, which mean that the end
moment and the distributed loading have a full comelation, this phenomena is not very
harmful. However, in design practice there is not a full correlation between those loading
effects. Therefore the Cj-value in that region is limited to €, = 2,3, In determining the elastic
critical lateral torsional buckling moment M, directly by means of an eigenvalue calculation,
this phenomenon is not easily recognized and can lead to unsafe design. Because the s factor
is related to the C) factor, by limiting the C, factor the C: factor is limited consequently.

Fig. 3 - , factor as function of [} and B
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4. BEAMS WITH LATERAL RESTRAINTS

4.1 General

Eurocode 3 only provides rules for beams, where the supports form fork conditions,
No provisions are given for intermediate lateral restraints.

Based on the calculation model described in chapter 2, lateral restraints at various
locations between the supports can be taken into account. In the next chapters some specific
cases are described.

4.2 Beam with uniform moment distribution

My =M M,=M(p=1)

lheam

Fig. 4 - Beam subjected to uniform moment

For a beam subjected to a moment distribution described by f=1, see Fig. 4, supported
at the ends with forks, and no intermediate lateral restraints, the elastic critical lateral torsional
buckling moment and the corresponding eigenmode is given in Fig. 5.
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Fig. 5 - Beam subjected to constant moment (f=1) without intermediate lateral
restraints

When an intermediate lateral restraint is applied at midspan, irrelevant on the position
above the centroid, the elastic critical lateral torsional buckling moment and the
comesponding cigenmode is given in Fig. 6.
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compression flange
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Fig. 6 - Beam subjected to constant moment (J=1) with intermediate lateral restraint at
midspan

For a beam with constant moment, fork supports at both ends and with half the length
of the previous beam, the elastic critical lateral torsional buckling moment appears to be the
same as the previous beam, From this it can be concluded that in this case the lateral restraint
at midspan can be considered as being a fork.

The influence of the position of the restraint at midspan is investigated in Fig. 7. From
this figure it can be seen that for every position of the restraint above -0.6 (A-r)2 the restraint
acts as a fork. However, from Fig. 8 it can be seen that the required critical spring stiffness
depends heavily on the position of the spring.
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Fig. 7 - Influence of the position of the restraint
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Fig. 8 - Influence of the position of the restraint on the critical stiffness [N/mm] of a
lateral restraint at midspan of an IPE200 beam with a span equals 30 times the beam
height

4.3 Beam with non-uniform moment distribution

6 = &0
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Fig. 9 - Beam subjected to a moment distribution described with [ = -1
For a beam subjected to a moment distribution described by B = -1, supported at the

ends with forks and no intermediate lateral restraints, the elastic critical lateral torsional
buckling moment and the corresponding eigenmode is given in Fig. 10
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Fig. 10 - Beam subjected to end moments (f§ = -1) without intermediate lateral
restraints
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In Fig. 10 it can be seen that the midspan cross section does rotate along the beam axis
but does not undergo lateral displacements al the centroid. From this it can be concluded that
a lateral restraint at the centroid and at midspan is ineffective. From calculations it also
appears that a lateral restraint at the upper or lower flange at midspan 15 also inelfective in this
case,

In design practice it 15 convenient to verify beams with lateral restraints at various
locations between the supports by looking to the individual parts of the beam hetween a fork
and a lateral restraint and to the individual paris of the beam between lateral restraints. See
Fig. 11.

M

L 9 2 L - 4 ¥ L 4 D
A B C [

£ [

P
- -—

Fig. 11 - Subdivision of a beam for code checking

For the individual beam parts AB, BC and CD the own non-uniform moment
distributions can be determined. To determine the elastic critcal lateral torsional buckling
moment for each part the length of that part nesds adjustment by multiplying that length by a
factor, which is composed from a parameter study using the numerical model.

'rl..'[' ={1 ,"-f* - 0.8 ﬂJ |rhcam part {S}
where:
1O = fr f beam pari = I:“_’_ I:Q'II

This procedure is only valid under the condition that the lateral restrainis are attached
to the beam at that location, which would undergo the largest displacement in case that the
lateral support would not be present.
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5. CONCLUSIONS

The numerical model is a powerful tool to calculate the elastic critical lateral torsional
buckling moment for double symmetric, prismatic beams with fork conditions at both ends
and lateral restraints at various locations between the supports.

Using such a tool or similar tools based on FEM need to be done with care in regions
where the elastic critical lateral torsional buckling moment is very sensitive 1o small changes
in de moment distribution,

From the analysis with the presented numerical model it can be concluded that the use
of lateral restraints is highly effective even in cases where the location is not optimal. This
leads to the observation that many structural elements that might be present for other reasons
are relative effective lateral restraints even without special measures to transform them to
optimal lateral restraints. This contributes highly to designing economic steel structures.

Still research need to be done for studying the lateral torsional stability of cantilever
beams with or without lateral restraints.
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