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INTRODUCTION 

In Eurocode 3 [1] two methods to determine the ultimate lateral torsional buckling (LTB) load of 
steel beams in bending are presented: the General and the Specific Methods. These methods make 
use of buckling curves, but the curves to be used are different for each method. The ultimate lateral 
torsional buckling load can also be calculated using the Finite Element Method (FEM) by means of 
a geometrical and material non-linear analysis on a beam including imperfections (GMNIA). This 
paper compares the ultimate loads based on the design rules in Eurocode 3 [1] for lateral torsional 
buckling of laterally restrained beams in bending to the ultimate loads obtained with Finite Element 
(FE) simulations on the basis of a parameter study. One lateral restraint is applied between the 
supports. The location of the lateral restraint is varied along the length of the beam and along the 
height of the section. The stiffness of the lateral restraints is determined in such a way that the 
elastic critical moment is 95% of the elastic critical moment with rigid lateral restraints. A restraint 
having at least this stiffness is considered to be rigid. Three different load cases are considered: a 
simply supported beam loaded by a central point load, a simply supported beam subject to a 
uniformly distributed load and a propped cantilever beam with a central point load. It is concluded 
that the Specific Methods give a large over-estimation of the ultimate loads obtained from FEM 
simulations, while the General Method gives good results.  

1 CODE REQUIREMENTS 
For both the General and Specific Methods in Eurocode 3 [1] to determine the ultimate LTB load of 
beams in bending, the design buckling resistance moment should be taken as: 

 yyLTRdb fWM χ=,  (1) 

in which is the appropriate section modulus: yW yply WW ,=  for class 1 or 2 sections. The reduction 
factor LTχ is a function of the imperfection factor LTα and the relative slenderness is given by: 
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This relative slenderness will be used in subsequent equations to determine the reduction factor. It 
should be noted that the elastic critical bending moment for LTB, is not specified by Eurocode 
3 [1]. Its determination is left to the designer. 
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1.1 General Method 
This method is presented in clause 6.3.2.2 of Eurocode 3 [1] as ‘general case’, hereafter referred to 
as General Method (GM). According to the GM, the reduction factor GMLT ,χ for LTB of beams is 
analogous to the reduction factor for column buckling [2]: 
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When 4.0≤LTλ or the design bending moment crEd MM 16.0≤  then 1, =GMLTχ . The imperfection 
factor LTα is selected according to the required buckling curve for the design of the beam. The 
appropriate buckling curve is given in Eurocode 3 [1], Table 6.4 and the pertaining imperfection 
factor can be found in Table 6.3. For a rolled section IPE240, buckling curve ‘a’ is specified. 

 1.1 Specific Method 
The method as presented in clause 6.3.2.3 of Eurocode 3 [1] was developed specifically for LTB of 
rolled or equivalent sections and is here referred to as the Specific Method (SM). According to this 
method, the reduction factor SMLT ,χ  is determined as follows: 
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in which 4.00, =LTλ (recommended maximum value) and 75.0=β (recommended minimum value). 
The imperfection factor LTα is selected according to the recommended buckling curve. These are 
given in Table 6.5 of Eurocode 3 [1]. For a rolled section IPE240, buckling curve ‘b’ is specified. 
To take the moment distribution and the corresponding beneficial effect of reduced plastic zones [3] 
into account, the reduction factor may be modified by dividing SMLT ,χ by a factor f: 
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The correction factor is given in Table 6.6 of Eurocode 3 [1]. In case the reduction factor is 
modified as indicated by Eq. (7), the method is referred to as Modified Specific Method (MSM). 
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2 FINITE ELEMENT SIMULATIONS 
FE simulations with the program ANSYS 10.0 using GMNIA for restrained beams yield ultimate 
LTB loads. 

2.1 FE-model and loading 
The FE model (Figs. 1, 2) of the restrained IPE beams consists mainly of 4 node shell elements 
based on Mindlin-Reissner shell theory. Using shell elements only would cause the root radii 
between flange and web to be ignored. To compensate for this, elastic-plastic rectangular hollow  
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Fig. 1.  Support conditions Fig. 2.  Lateral restraint 
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section beam elements are used at the flange-web intersection [4]. 
Two different types of supports with torsion restraints yielding fork conditions are modelled: a 
simple support (Fig. 1a) and a fixed support where warping is not restrained (Fig. 1b). The fixed 
support is used for load case 3. The stiff (beam) elements (Fig. 1) are used to prevent distortion of 
the cross-section.  
The lateral restraint is modelled by a single link element (Fig. 2). Its position varies along the 
longitudinal beam axis ( ) and the section height ( ). In case the lateral restraint is attached to 
the web, stiffeners have been introduced to prevent local distortion of the cross-section. 
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In the parameter study (section 3) three load cases will be investigated (Fig. 3). The concentrated 
load is applied to a single node requiring the introduction of stiffeners. The uniformly distributed 
load has been modelled by nodal loads applied at the intersection of the web and the upper flange. 

2.2 Material and imperfections 
The steel grade employed in all analyses was S235 with yield strength 235 N/mm2. A bilinear 
stress-strain curve without hardening was used with a Young’s modulus of elasticity of 210 
kN/mm2. The residual stresses were modelled as shown in Fig. 4. The maximum value of the 
residual stresses is taken to be one third of the yield stress [5]. 
According to Eurocode 3 [1], the first elastic critical buckling mode may be used to model the 
geometrical imperfections of the beam. If this is done, the imperfection pattern will vary from one 
simulation to the other depending on the location and the stiffness of the lateral restraint, leading to 
inconsistent results [4]. To avoid this, the imperfection pattern used is that of an unrestrained beam. 
An imperfection amplitude of  is used as suggested and used by other researchers (e.g. [6]) 
in case residual stresses are explicitly taken into account. This amplitude is applied at the location 
where the largest displacement is obtained in a linear buckling analysis (LBA). The first elastic 
critical buckling mode is scaled accordingly to obtain the imperfections. 
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Fig. 3.  Load cases Fig. 4. Residual stress 

3 PARAMETER STUDY 
The parameter study is done for the three load cases (Fig. 3) on restrained IPE240 beams. The first 
case consists of a concentrated load at mid-span on a simply supported beam. The load is applied at 
the intersection of web and top flange. Three span lengths are considered: 7.2m, 5.4m and 3.6m. 
The second load case is a uniformly distributed load on a simply supported beam applied at the web 
top flange intersection. One span length is considered: 7.2m. The third load case is a statically 
indeterminate system. This load case resembles the first load case but here one of the supports is 
fixed such that warping is not restrained. For this load case again one span length is considered: 
7.2m. The location of the lateral restraints is varied: six locations in longitudinal direction from 
support to mid span at regular intervals are considered and 5 locations from top flange centroid to 
bottom flange centroid at regular intervals are considered. 

3.1 Position and stiffness of lateral restraint 
In Fig. 5 the influence of the location of an infinitely stiff lateral restraint on the elastic critical 
moment is shown for load case 1 with span length 7.2m. It is clear that a lateral restraint has more 
effect at the centre of the span and at the top flange, resulting in larger elastic critical moments.  
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Fig. 5.  Influence of restraint location on elastic critical moment 

However, infinitely stiff lateral restraints do not exist in practice. Therefore, the stiffness of the 
restraint has been determined, allowing a maximum reduction of 5% in the elastic critical 
moment with infinitely stiff lateral restraints (as suggested in [7]). 
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3.2 Illustration of calculations 
To illustrate the comparison between FE and EC3 suggested methods a simply supported steel 
beam, IPE240, with a length of 7200 mm is subjected to a concentrated load at mid-span, i.e. load 
case 1. The lateral restraint is located at mid-span at the centroid of the upper flange. The restraint 
stiffness kN/m, determined by trial and error, is used. This is a relatively low value 
since the lateral support location is very effective. FE analyses for the elastic critical and ultimate 
loads in addition to the three methods of analysis, as described in Eurocode 3 [1] (section 1), result 
in four sets of values for relative slenderness

438%95 =K

LTλ with reduction factor LTχ . 
The calculation of the relative slenderness requires prior knowledge of the elastic critical and design 
bending resistance moments. The design bending resistance moment of an IPE240 is 

kNm. The elastic critical moment has been obtained from a FE linear 
buckling analysis (LBA) on a model as explained in section 2: 
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Fig. 6.  Load-displacement curves Fig. 7.  GMNIA versus GM – load case 1 

  



 

990.148%95, =crM kNm. Using Eq. (2) results in a relative slenderness: 760.0, =FEMLTλ . 
The application of a geometric and material non-linear analysis on an imperfect beam (GMNIA) 
gives a load-displacement curve as shown in Fig. 6, including the failure load of the beam being 
45.317 kN. The bending moment at failure then becomes 571.814/2.7317.45 =×=uM kNm. The 
reduction factor for the FEM can be determined from Eq. (1): 947.0, =FEMLTχ . 
The reduction factor to be used in the GM can be obtained using the earlier calculated relative 
slenderness of the beam, i.e. 760.0=LTλ . A value for LTΦ can be determined from Eq. (4) for 
buckling curve ‘a’ where 21.0=LTα  for rolled sections: 848.0, =Φ GMLT . The reduction factor can 
now be calculated using Eq. (3): 818.0, =GMLTχ . 

The reduction factor to be used in the SM can also be obtained by employing the earlier calculated 
relative slenderness of the beam structure. The value for LTΦ must now be determined from Eq. (6) 
for buckling curve ‘b’ where 34.0=LTα for rolled sections: 778.0, =Φ SMLT .  The reduction factor 
for this method comes from Eq. (5): 839.0, =SMLTχ . 
When the moment distribution is taken into account, the reduction factor can be increased. A 
modification factor can be obtained by using a correction factor 86.0=ck . The modification factor 
is obtained from Eq. (8) which leads to: 930.0=f . The modified reduction factor that can be used 
in the MSM with moment distribution becomes with Eq. (7): 901.0, =MSMLTχ . 

3.3 Comparison 

In Figs. 7-9 comparisons between the reduction factors from the numerical simulations and those 
obtained by the GM are shown for load cases 1 to 3. The 45o line indicates a perfect match between 
the results from FE simulations and the GM. The two lines next to the 45o line mark a band width of 
5% over- and underestimation. In these figures it is shown that the GM performs well.  
In Figs. 10, 11 comparisons between the reduction factors from the numerical simulations and those 
suggested by the SM and the MSM are shown for load case 1. It can be observed that results more 
than 10% on the unsafe side are present. The same holds for the other two load cases [4].  
Similar results were obtained in [8] for lateral torsional buckling of unrestrained steel beams. 

4 CONCLUSIONS 

This paper compares ultimate lateral torsional buckling loads of restrained beams in bending based  
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Fig. 8.  GMNIA versus GM – load case 2 Fig. 9.  GMNIA versus GM – load case 3 
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Fig. 10.  GMNIA versus SM – load case 1 Fig. 11.  GMNIA versus MSM – load case 1 

on design rules in Eurocode 3 [1] to ultimate loads obtained with Finite Element simulations.  
For the calculations performed in the parameter study, worrisome results have been obtained on the 
validity of the Specific Methods for lateral torsional buckling of rolled or equivalent welded 
sections. The Specific Methods give larger reduction factors than the General Method. It can be 
concluded that the Specific Methods can lead to large overestimations of even more than 10% of the 
ultimate lateral torsional buckling load of restrained beams obtained from Finite Element 
simulations. Therefore, Nationally Determined Parameters in the Specific Method should be chosen 
with care.  
The General Method however gives good results for lateral torsional buckling of steel beams with 
restraints between the supports.  
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