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INTRODUCTION 

This paper describes an analytical method to determine the first-order, in-plane plastic limit load Fpl 

of steel circular arches. In a research project on the out-of-plane stability of steel arches which is 

being carried out at the Eindhoven University of Technology it is investigated whether this load 

capacity can be used to develop design rules to predict the strength of free-standing arches with the 

use of buckling curves. In such design rules the non-dimensional slenderness λ of the arch plays an 

important role:  

 crpl FF /=λ   (1) 

where Fcr is the out-of-plane buckling load. 

Limit analysis of arches is more complex than limit analysis of beams since the influence of normal 

forces in general cannot be neglected. Chakrabarty [1] describes a method to determine the limit 

load of arches, based on the work by Onat and Prager [2]. This method requires the interaction 

curve for combined bending and axial force in the cross-section to be approximated by piecewise 

linear segments. In this paper a method is described which does not require this approximation. The 

method will be checked by comparing the limit load determined using this method to results from 

finite element simulations. The paper is limited to circular arches with either pinned or fixed 

supports, subjected to a concentrated load F at the top, with a maximum subtended angle 2γ of 180
0 

(Fig. 1), failing by an arch mechanism. From the finite element simulations it was found that for 

small subtended angles the arches fail by a beam mechanism (Figs. 2 and 3), as also noted by 

Stevens [3]. For a beam mechanism in an arch with fixed supports, the outer plastic hinges do not 

necessarily form at the supports. This is so because the bending moment at the fixed support may 

be either positive or negative, enabling a gradual transition from arch to beam mechanism.  
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1   APPROACH 

To determine the in-plane limit load of arches an upper-bound and a lower-bound approach can be 

used. In this study the lower-bound approach has been used, which starts by assuming a moment 

distribution that is in equilibrium with the external loads, for which the yield condition is nowhere 

violated. If only bending moments are present, the distribution should satisfy the condition M≤ Mpl, 

where Mpl is the full plastic moment capacity of the section. If also normal forces are present, the 

condition M≤ Mpl;red should be satisfied, where Mpl;red is a reduced plastic moment capacity.  



 

  

The lower-bound approach generally results in a lower bound of the limit load, unless a moment 

distribution is assumed which allows the development of a mechanism. It was found that for the  

check whether a mechanism can develop it is not enough to show that a sufficient number of plastic 

hinges (defined as points where M=Mpl;red) is formed; also the kinematic admissibility of the 

mechanism must be checked.  

 

2   INTERACTION CURVE AND NORMALITY RULE 

 

This paper focuses on arches with rectangular solid cross-sections, for which the influence of the 

shear force on the plastic moment capacity can be neglected. For such a cross-section the yield 

condition (M-N interaction diagram) is [4]: 

 
( ) 01

2
=−+= plpl N/NM/Mψ   (2)  

where Mpl = ¼bh
2
fy is the full plastic moment capacity, Npl = bhfy  the full plastic normal force 

capacity, b the width of the beam, h the height of the beam and fy the yield stress. From this yield 

condition the reduced plastic moment capacity Mpl;red can be derived as: 

 ( )2
1 plplred;pl N/NM/M −=  (3)  

In a plastic hinge where not only a bending moment but also a compressive normal force is acting, 

both a plastic rotation φ and a plastic contraction δ occur. The ratio between φ  and δ , which is 

needed for checking the kinematic admissibility of the mechanism, can be determined from the 

normality rule: 
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3 EQUILIBRIUM EQUATIONS FOR THE ARCH MECHANISM 

Due to symmetry only one half of the arch needs to be considered (Fig. 4). It is assumed that plastic 

hinge no. 1, occurring at θ = θ1 = 0, has a reduced plastic moment capacity Mpl1;red while plastic 

hinge no. 2 occurring at θ = θ2, has a reduced plastic moment capacity Mpl2;red. For a fixed arch, 

plastic hinge no. 3 occurring at θ = γ has a reduced plastic moment capacity Mpl3;red. The horizontal 

and vertical reaction forces can be determined from equilibrium conditions, resulting in: 
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 (5)  

For a pinned arch Mpl3;red should be taken equal to zero in Eq. (5) because the moment at the pinned 

support is zero. The bending moment M and normal force N can then be determined as: 

 ( ) ( ) θθθ sinRFcosRRMM nnAHred;pl 2
1
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( ) θθθ sinRcosRN BVBH −−=  (6) 

 
Fig. 4. Geometry and reactions        Fig. 5.  Funicular line for      Fig. 6. Funicular line for 

            of right half of arch                           pinned arch                           fixed arch 

 

If N(θ) is known then Mpl;red(θ) can be determined from Eq. (3). In the bending moment distribution 

described by Eq. (6) it is assumed that only the plastic hinges no. 1 and no. 3 have been formed. To 

determine the limit load Fpl for which also plastic hinge no. 2 is formed it is required that: 

 M(θ=θ2)= -Mpl2;red (7) 



 

  

Solving Fpl from this equation results in: 
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The limit load Fpl given by Eq. (8) depends on the angle θ2 where the plastic hinge no. 2 is formed.  

For a pinned arch (for which Mpl3;red should be taken equal to zero in Eq. (8)) this angle can be 

determined by solving θ2 from the equation dFpl/dθ2 =0 with the help of the program Mathematica 

[5], resulting in: 
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where:
 red;plred;pl MMC 21 +=  (10)  

For a fixed arch it can be shown [6] that: 

  Mpl3;red = Mpl1;red      N3 = N1         2/2 γθ =  (11) 

where N3 and N1 are the normal forces in plastic hinges no. 3 respectively no. 1. To determine the 

reduced plastic moment capacities Mpl1;red and Mpl2;red the normal forces N1 and N2 in plastic hinges 

no. 1 and no. 2 are needed. These forces can be expressed in the support reactions: 

 ( ) BHAH RRNN −=−=== 01 θ  (12) 

 
( ) 22
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Eq. (12) can be derived from Eq. (6). Eq. (13) makes use of the fact that the location of the 

maximum negative (hogging) moment corresponds to the location of maximum normal force (see 

Figs. 5 and 6). Because the support reactions depend on the load F, the reduced plastic moment 

capacities depend on the limit load Fpl to be determined. Hence an iterative procedure is needed to 

determine Fpl. 

4 ITERATIVE PROCEDURE  

If we know N1 we can calculate the reduced plastic moment capacity Mpl1;red from the interaction 

curve (Eq. (3)), and the corresponding load F from Eqs. (12) and (5): 
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For a fixed arch Mpl3;red= Mpl1;red (see Eq. (11)), for a pinned arch Mpl3;red should be taken equal to 

zero in Eq. (14), since the moment at the support is zero. Hence we can also calculate the normal 

force N2 , using Eqs. (13) and (5), and the reduced plastic moment capacity Mpl2;red. Then also the 

limit load Fpl can be determined from Eqs. (8), (9) and (10). 

For the exact value of N1, F=Fpl. If N1 is assumed too small then F>Fpl and if N1 is too large then 

F<Fpl. This means that the normal force N1 can be determined using the bisection method (Fig. 7), 

where ε is the convergence tolerance. After finishing the iterative procedure it can be checked 

whether indeed everywhere in the arch:
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Fig. 7.  Flow chart of bisection method 
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5 KINEMATIC ADMISSIBILITY OF ARCH MECHANISM 

 

The lower bound approach described in the previous sections ensures that a bending moment 

distribution can be found with a sufficient number of plastic hinges to enable the development of an 

arch mechanism. To check whether this arch mechanism can indeed develop, the kinematic 

admissibility of the mechanism must be checked. Fig. 8 therefore shows the rotations φi and 

contractions δi occurring in the plastic hinges of the arch mechanism, where the subscript i denotes 

the number of the hinge. In a first order limit load calculation the magnitude of the rotations and 

contractions cannot be determined, only the relation between them. Therefore all rotations and 

contractions will be expressed in the rotation φ1.  

It was found that for a pinned arch kinematic admissibility requires: 

 ∆ver/φ1≥0  (15) 

and: 

  φ2/φ1≥0 (16) 

where ∆ver is the vertical displacement of the top of the arch. For a fixed arch kinematic 

admissibility additionally requires that: 

 φ3/φ1≥0 (17) 

A negative (upward) vertical displacement ∆ver would result in negative external work and hence in 

a negative limit load. Eqs. (16) and (17) ensure that a negative (hogging) bending moment occurs at 

plastic hinge 2 and a positive (sagging) bending moment at the fixed supports, as is assumed in the 

bending moment distribution for the arch mechanism (see Figs. 2 and  3).  

The vertical displacement Dver of the top of the arch can be calculated from geometry as: 

 ( ) γδθδϕϕ sinsin 32232
1

222
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where L is the span of the arch and x2 determines the horizontal position of plastic hinge no. 2: 

 γsinRL n2=
     22

1
2 sinθnRLx −=  (19) 

The contractions δi can be expressed in the rotations φi : 

 111 ϕδ c=      222 ϕδ c=      333 ϕδ c=  (20) 

where c1, c2 and c3 can be determined from the normality rule (Eq. 4). For the pinned arch, which 

has no plastic hinge at the support, c3 should
 
be taken equal to zero. For a fixed arch c3=c1. 

Note
 

that c1 and c2 depend on the normal force in the hinge. The rotation φ3 can be determined as: 

 123 ϕϕϕ −=  (21) 

The rotation φ2 can be expressed as a function of φ1 using the condition of zero horizontal 

displacement Dhor of the top of the arch which may be written from geometry as [1]: 

 ( ) 0coscos 3221223 =+++−−=∆ γδθδδϕϕ yHHhor  (22) 

where H is the height of the arch, and y2 determines the vertical position of plastic hinge no. 2: 

 ( )γcosRH n −= 1
     

( )22 1 θcosRHy n −−=  (23) 

Using Eq.( 20) and (21) it can then be derived from Eq. (22) that:  
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Fig. 8. Arch mechanism                             Fig. 9. Geometry of arches considered in parameter study 



 

  

Combining Eqs. (21) and (24) it follows that: 
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Using Eqs. (20), (24) and (25) also the vertical displacement ∆ver can be expressed as a function of 

φ1. Eqs. (24) and (25) can be used to check whether Eqs. (16) and (17) are satisfied. 

 

6   FINITE ELEMENT MODEL 

 

To check the proposed iterative method, its results are compared to the results of geometrical linear, 

material non-linear finite element simulations using ANSYS release 11.0.The following input 

values were used (Fig. 9): developed length of arch S = 8000 mm, b = 200 mm, h = 400 mm. The 

subtended angle γ was varied. The corresponding radius Rn can be calculated as: 

 )/(SRn γπ90=  (26) 

Bi-linear elasto-plastic material behaviour was modelled without hardening, taking fy=235 N/mm
2
 

for the yield stress and E=2.1ÿ10
5 

N/mm
2
 for the modulus of elasticity. In the finite element model 

100, three node, curved Timoshenko beam elements (BEAM 189, [7]) were used, with 4 integration 

points over the height of the beam, and two groups of integration points over the length of the 

element (Fig. 10). It was found that these elements obey the following yield condition (Fig. 11): 

 01420 =−−= plpl N/N.M/Mψ  if  500 .N/N pl ≤≤   

 
( ) 01581 =−−= plpl N/N.M/Mψ  if 150 ≤< plN/N.  (27)   

from which it can be derived that: 

 plplred;pl N/N.M/M 4201−=  if 500 .N/N pl ≤≤
 

 
( )

plplred;p N/N.M/M −= 1581  if 150 ≤< plN/N.  (28) 

and: 
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For a better comparison between ANSYS and analytical results, Eqs. (28) and (29) have been used 

instead of Eqs. (3) and (4) to calculate Fpl and to check the kinematic admissibility of the arch 

mechanism.  

 

 
Fig. 10. Integration points for                                    Fig. 11. Normal force and bending interaction 
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7  RESULTS AND CONCLUSIONS 

 

Tables 1 and 2 give an overview of the results for the pinned and fixed arch respectively. For an 

accuracy ε  of 10
-5

 in the analytical solution (Fig. 7) about 20 iterations are needed. The error given 

in Tables 1 and 2 is defined as (Fpl-Fpl;ANSYS)/Fpl;ANSYS. It is expected that, due to the discretisation 

error, ANSYS will give an upper bound approximation of the limit load. It can be seen that indeed 

the ANSYS limit loads are always larger than the analytically determined limit loads, except for the  



 

  

pinned arch with γ = 5
0
. This may be caused by numerical problems: in this arch also convergence 

problems were encountered.  

With respect to the check of the kinematic admissibility it was found that for pinned arches Eq. (16) 

is decisive, for fixed arches Eq. (17). The change from arch mechanism to beam mechanism occurs 

at γ = 5
0 

for the pinned arch and at γ = 35
0 

for the fixed arch. In ANSYS this transition is found to 

occur at γ = 9
0 

respectively at γ = 35
0
. As expected, the analytically determined lower bound limit 

loads based on the bending moment distribution of the arch mechanism become much smaller than 

the ANSYS limit loads, when (analytically) a beam mechanism is decisive. 

It can be concluded that the proposed lower bound, iterative analytical method to determine the 

limit load corresponding to an arch mechanism, works well and gives good results. By checking the 

kinematic admissibility of the mechanism, it can be determined when a beam mechanism becomes 

decisive. If necessary the method can be modified to include the influence of the shear force on the 

reduced plastic moment capacity. The method can also be modified for use with other loading 

conditions and other cross-sections with their corresponding interaction curve.  

 

Table 1.  Results for pinned arch  Table 2.  Results for fixed arch 
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1 0.942 beam 0.370   -61 0.59 <0  15 3.854 beam 3.482 -9.65 <0 

5 1.583 beam 1.617 +2.15 2.93 >0  30 5.464 beam 5.386 -1.43 <0 

10 2.845 arch 2.791 -1.90 5.87 >0  35 5.905 arch 5.821 -1.42 >0 

15 3.750 arch 3.680 -1.87 8.81 >0  45 6.242 arch 6.143 -1.59 >0 

20 4.449 arch 4.377 -1.62 11.75 >0  60 6.479 arch 6.372 -1.65 >0 

25 4.988 arch 4.936 -1.04 14.71 >0  75 6.587 arch 6.477 -1.67 >0 

30 5.227 arch 5.171 -1.07 17.61 >0  90 6.605 arch 6.504 -1.53 >0 

45 5.537 arch 5.466 -1.28 26.46 >0        

60 5.636 arch 5.575 -1.08 35.35 >0        

75 5.642 arch 5.583 -1.05 44.30 >0        

90 5.576 arch 5.521 -0.99 53.32 >0        
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