"CHS adhesively bonded by GFRP"

Michalis Liatzouras, IMd

Based on MSc Thesis – TU Delft CiTG, 2018 Supervisors: Dr. M. Pavlovic; Prof. dr. M. Veljkovic

Technology day, Delft 21 June 2018

Content

- Wrapped steel joints and promising applications

- Preliminary experimental results

- Conclusions and recommendations

Why adhesively bonded steel joints?

- Progressive, localized and permanent structural change of materials
 - Growth only under fluctuating/repeated stresses
 - Culminate into initiation of cracks and leads to final failure

CHS: Steel Circular Hollow Sections

- Cost effective solution for lattice structures
 - Applications:

• Main disadvantage: Fatigue endurance

Fatigue: Steel structures

- Welded structures: peak stresses at toes and roots of welds \rightarrow week point
 - Tubular joints: non-uniform stiffness distribution \rightarrow week point

• SCF ranging from 2 to 40

FRP wrapped steel joints

Adhesive Bonding

Adhesive Bonding

- Applications in Aerospace Engineering
- First attempts during the World War II
- Widely used to replace mechanical fasteners
- Increasing applications
- Advantages:
 - Excellent strength-to-weight ratio
 - Ease of application
 - Reduced stress concentrations
 - Stiffness improvements

Bonded components in the Fokker Friendship F27 (1950s)

Adhesive Bonding in Civil Engineering

• Limited structural applications

Fiber Reinforced Polymers (FRP)

<image>

Glued Laminated Timber

Strengthening of existing structures

Research Question

- 12 static tests
- 2 dynamic tests (fatigue loading)
- Axial joints: 3 series
- FRP Dimensions:
 - ⁻ L=240 mm, t=14 mm
 - [–] L=140 mm
 - [–] t=7 mm

Experiments

• X-joints: 1 series (of 3 identical specimens)

• Comparison with traditional joints

Experiments: Welded X-Joint

Experiments: Welded Axial

Experiments: X-Joint

Experiments: X-Joint

Experiments: Axial Joint

Experiments: Dynamic Test

• FRP joint: 960,000 cycles (Δ*F*=60 KN, Δσ=142MPa)

• Steel joint: 29,000 cycles

Finite Element Analysis

FEA: Comparison with Experiments

Dotted lines are averaged experimental measurements; solid lines are FEA results.

Failure Mode

- Large stress concentrations at plug center
- Bond strength is reached
- Damage initiates at the steel-FRP interface
- Propagates until final failure

Optimization

• FRP thickness

• FRP Length

• Fabrication quality, FRP stiffness

Challenges

- Environmental conditions
 - Long-term effects
 - Fabrication
- Complex geometry / properties

Conclusions & Recommendations

- FRP wrapped steel joints can achieve almost the same static resistance as the welded joint:
 - X-joint: 88% 89 % of the yield resistance
 - Axial joint: 71% 96% of the yield resistance
 - Indication of greatly increased fatigue life:
 - ⁻ FRP joint: 960,000 cycles
 - Welded joint: 29,000 cycles
- The resistance of the joints can be optimized by:
 - Length and thickness of the wrapping
 - Fabrication

OUTLOOK

Research objectives: Understanding, Prediction models, Optimization

Planned by Dr. M. Pavlovic

The patent pending joining technology by Wrapped FRP joints has been developed at TU Delft – Faculty of Civil Engineering and Geosciences. For further information contact Assist. prof. dr. Marko Pavlovic

(m.pavlovic@tudelft.nl)

End of presentation