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9 Appendix 3: Geometry of TFC 
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9.1 Derivation of stiffness formulae 

 

Below, the discrete models of the three different geometries have been translated into continuous models 

with a bending stiffness (EI) and a racking shear stiffness (GA). With these two characteristics, the stiffness of 

the discrete model can be approximated which enables; 

o An optimisation of the efficiency via a more ideal distribution of the construction material over the 

different members 

o A better understanding of the functioning of the construction 

o An easy change of parameters (geometry, material) and assessment of the effect on the deflection 

 

 

 
 

Figure 9.1: Discrete model versus continuous model 

 

These formulae are derived for all three geometries hereafter referred to as; 

o “vertical columns” 

o “diagonal columns” 

o “diagonal & vertical columns”  
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TFC variant: “Vertical columns” 

The racking shear stiffness and the bending stiffness are first determined for the 2-dimensional trussed frame 

and then for the 3-dimensional trussed tube structure, as illustrated in Figure 9.2 and Figure 9.3, respectively. 

 

  

Figure 9.2: 2-dimensional variant “vertical columns” Figure 9.3: 3-dimensional variant “vertical columns” 

 

Racking shear stiffness 

The force F is spread evenly over the 4 diagonals in one horizontal section of the TFC. Due to force F the 

members undergo a shortening or a lengthening as illustrated in Figure 9.4. 

 

 

Figure 9.4: Section of a quarter-side of the variant “vertical columns”  

 

With the help of the cosinus-rule, the horizontal deflection (δ) due to a force (F) can be calculated: 

 

 cos��� 2�ℎ = �� + ℎ� − ��  

 

 ��ℎ + Δℎ� 2��ℎ + Δℎ� = �� + �ℎ + Δℎ�� − �� − Δ���  

 2�� = �� + ℎ� + 2ℎΔℎ + Δℎ� − �� + 2�Δ� − Δ�� 

 

Given that �� + ℎ� − �� = 0 (Pythagoras’ theorem), and that Δ�� ≪ Δ�, the equation can be simplified: 
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 2�� = 2ℎΔℎ + 2�Δ� 

 

��������� = ℎΔℎ� + �Δ��  

 

This is the discrete function for the horizontal deflection (δ) as the sum of the bending deflection (lengthening 

of the vertical) and the shear deflection (shortening of the diagonal), respectively. The continuous function for 

horizontal deflection, with one concentrated load at the top is given by: 

 

����������� = �ℎ�
3 ! + �ℎ"# 

 

Analogous, the continuous function for the horizontal deflection (δ) is the sum of the bending deflection and 

the shear deflection. Subsequently, the parameter for shear deflection from the discrete function can be 

equated with the parameter from the continuous function: 

 �Δ�� = �ℎ"# 

 

"# = �ℎ��Δ� 

 

With: 

 

Δ� = � �� � #�  

 

The formula can be written as: 

 

"# = ��ℎ #���  

 

However, this formula only gives the racking shear stiffness for one diagonal, whereas the 2-dimensional 

variant has 4 diagonals. Therefore, the racking shear stiffness needs to be multiplied by four, to give the 

correct formula for the trussed façade frame: 

 

"# = 4��ℎ #���  

 

In the case of the trussed tube structure, the expression for the racking shear stiffness needs to be multiplied 

by two since shear occurs in the two web planes of the tube. The formula for the tube structure is: 

 

"# = 2 ∙ 4��ℎ #���  

 

Bending stiffness 

The gross bending stiffness can be determined with: 
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 !& = E!�(�;& + E#*+� 

 

Here, EI-./;0 does not contribute to the bending stiffness since the connections are modeled as pinned 

nodes. The other parameter ΣE#*+� represents the bending stiffness from the axial stiffness of the vertical 

members. Therefore the formula for the bending stiffness becomes: 

  !& = E#*+� 

 

  

Figure 9.5: Plan of 2-dimensional geometry “vertical 

columns” 

Figure 9.6:  Plan of 3-dimensional geometry “vertical 

columns” 

 

In the case of the 2-dimensional construction, with 5 columns, the formula is: 

  !& = E#*�2 ∙ �� + 2 ∙ 2��� = 10�� #* 

 

In the case of the 3-dimensional construction, with 16 columns arranged in an orthogonal grid, the formula 

can be written as: 

  !& = E#*�4 ∙ �� + 10 ∙ 2��� = 44�� #* 

 

The term ‘E’ in the abovementioned 2 formulae represent the Young’s modulus of the construction material. 
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TFC variant: “diagonal columns” 

 

  

Figure 9.7: 2-dimensional variant “diagonal columns” Figure 9.8: 3-dimensional variant “diagonal columns” 

 

Racking shear stiffness 

To determine the racking shear stiffness, a force F is spread over the diagonals in one horizontal section of the 

TFC. The assumption is made that the force is spread more or less evenly over the 4 diagonal.  

 

 

Figure 9.9: Section of a quarter-side of the variant “diagonal columns” 

 

Due to force F the diagonal members undergo a shortening or a lengthening. With the help of the cosinus-

rule, the horizontal deflection (δ) can be calculated: 

 cos��� 2�3 = �� + 3� − 4� 

 � + 1/2��� + Δ�� 2��� + Δ�� = �� + �� + Δ��� − �� − Δ��� 

 

6� + 12 �7 2� = �� + �� + 2�Δ� + Δ�� − �� + 2�Δ� − Δ�� 
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6� + 12 �7 2� = �� + 4�Δ� 

 

6� + 12 �7 = 12 � + 2�Δ��  

 

��������� = 2�Δ��  

 

Note that this discrete function only holds an equation for shear deflection since bending deflection does not 

occur in the section considered here. By equating the discrete with the continuous function for horizontal 

deflection – with one concentrated load at the top – the racking shear stiffness can be determined: 

 

����������� = �ℎ"# 

 2�Δ�� = �ℎ"# 

 

"# = �ℎ�2�Δ� 

 

With: 

 

Δ� = � �� 2� #�  

 

The formula becomes: 

 

"# = ��ℎ #�2��  

 

Since four triangles are present per horizontal section the racking shear stiffness needs to be multiplied by 

four to find the total racking shear stiffness: 

 

"# = 2��ℎ #���  

 

In the case of the trussed tube structure, the expression for the racking shear stiffness needs to be multiplied 

with two since shear occurs in the two web planes of the tube. The formula for the tube structure is: 

 

"# = 2 ∙ 2��ℎ #���  

 

Bending stiffness 

The bending stiffness comprises Young’s modulus, dependent on the construction material, and the moment 

of inertia, which can be calculated with Steiner’s theorem: 
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!& = Σ#�8�+� 

 

However an equivalent section (Aequ) needs to be derived for the moment of inertia. This equivalent section is 

found by deriving equivalent formulae for the shortening of the diagonals and lengthening of the horizontal, 

and then combining them. The deformation of such a rhomboid can be seen in Figure 9.10. 

 

 

Figure 9.10: Deformation of an ‘equivalent section’ 

 

Shortening of the diagonals 

Figure 9.11 represents the schematization of the shortening of the diagonal. 

 

 

Figure 9.11: Part of the equivalent section: shortening of the diagonal 

 

The force in the diagonal can be expressed as: 

 

�� = � ∙ �ℎ 

 

And the shortening of the diagonal member can subsequently be written as: 

 



Trussed Façade Constructions – R.B. Roelofs Page 50 

 

Δ� = � �ℎ ∙ � #� = ���
ℎ #�  

 

Pythagoras’ theorem gives: 

 �ℎ − ��� = �� − Δ��� − �9���� 

 ℎ� − 2ℎ� + �� = �� − 2�Δ� + Δ�� − �9���� 

 

Given that �:;��� + ℎ� − �� = 0 (Pythagoras’ theorem), that ∆�� ≪ Δ�, and that δ� ≪ δ the equation can be 

simplified: 

 2ℎ� = 2�Δ� 

 

� = �Δ�ℎ  

 

After substitution of Δd the formula becomes: 

 

� = �ℎ ∙ ���
ℎ #� = ���

ℎ� #�  

 

The displacement δ can be equated with the formula for the shortening of a member due to a normal force. 

However the abovementioned formula only takes one diagonal into account; since there are 2 per rhomboid 

(equivalent section), the formula needs to be multiplied by 2 as well : 

 

� = ���
2ℎ� #� = �ℎ #�8�;9 

 ��
2ℎ�#� = ℎ#�8�;9 

 

#�8�;9 = 2ℎ�
�� ∙ #� 

 

Lengthening of the horizontal 

Figure 9.12 represents the schematization of the lengthening of the horizontal. 
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Figure 9.12: Part of the equivalent section: lengthening of the horizontal 

 

The force in the horizontal can be expressed as: 

�> = � ∙ 9��ℎ  

 

And the lengthening of the horizontal member can subsequently be written as: 

 

Δ9�� = � 9��ℎ ∙ 9�� #? = ��9����
ℎ #?  

 

Pythagoras’ theorem gives: 

 �ℎ − ��� + �9�� + Δ9���� = ���� 

 ℎ� − 2ℎ� + �� = �� − �9���� − 9��Δ� − �Δ9���� 

 

Given that �:;��� + ℎ� − �� = 0 (Pythagoras’ theorem), that �∆:;��� ≪ Δ:;�, and that δ� ≪ δ the equation can 

be simplified: 

 2ℎ� = 9��Δ� 

 

� = 9@�Δ�ℎ  

 

After substitution of Δd the formula becomes: 

 

� = 9��ℎ ∙ ��9����
ℎ #? = ��9����

ℎ� #?  

 

The displacement δ can be equated with the formula for the shortening of a member due to a normal force: 
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� = ��9����
ℎ� #? = �ℎ #�8�;� 

 �9����
ℎ�#? = ℎ#�8�;� 

 

#�8�;� = ℎ�
�9���� ∙ #? 

 

Now that Aequ;1 and Aequ;2 are known, both can be combined into one formula: Aequ the is the inverse sum of 

the formulae for Aequ;1 and Aequ;2: 

 1#�8� = 1#�8�;9 + 1#�8�;� 

 1#�8� = ��
2 ∙ ℎ� ∙ #� + �9����

ℎ� ∙ #? 

 

#�8� = A ��
2 ∙ ℎ� ∙ #� + �9����

ℎ� ∙ #?BC9
 

 

 

 

 

Figure 9.13: Plan of 2-dimensional geometry “diagonal 

columns” 

Figure 9.14: Plan of 3-dimensional geometry “diagonal 

columns” 

 

Subsequently, the bending stiffness can be calculated by multiplying the moment of inertia by Young’s 

modulus: 

  !& = E#�8��2 ∙ �9���� + 2 ∙ ������� = 5�� #�8� 

 

In the case of the 3-dimensional construction, with 16 columns arranged in an orthogonal grid, the formula 

can be written as: 

  !& = E#�8��4 ∙ �9���� + 4 ∙ ������ + 8 ∙ �2���� = 42�� #�8� 
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TFC variant: “diagonal & vertical columns” 

 

  

Figure 9.15: 2-dimensional variant “diagonal & vertical 

columns” 

Figure 9.16: 3-dimensional variant “diagonal & vertical 

columns” 

 

Racking shear stiffness 

The racking shear stiffness (GA) of this variant is equal to the racking shear stiffness of the TFC variant 

“diagonal columns”: the vertical columns at the corners do not affect it. The formula for the trussed façade 

frame is: 

 

"# = 2��ℎ #���  

 

And the formula for the trussed tube structure is: 

 

"# = 2 ∙ 2��ℎ #���  

 

Bending stiffness 

The bending stiffness comprises Young’s modulus, dependent on the construction material, and the moment 

of inertia, which can be calculated with Steiner’s theorem: 

 !& = Σ#�8�+� + Σ#�+� 

 

Where the equivalent section (Aequ) is the same as for the geometry variant “diagonal columns”: 

 

#�8� = A ��
2 ∙ ℎ� ∙ #� + �9����

ℎ� ∙ #?BC9
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Figure 9.17: Plan of 2-dimensional geometry “diagonal & 

vertical columns” 

Figure 9.18: Plan of 3-dimensional geometry “diagonal & 

vertical columns” 

 

In the case of the 2-dimensional construction, with 4 equivalent plus 2 vertical columns, the formula is: 

  !& = E#�8��2 ∙ �9���� + 2 ∙ ������� + E#*�2 ∙ �2���� = E���5#�8� + 8#*� 

 

In the case of the 3-dimensional construction, with 16 equivalent plus 4 vertical columns arranged in an 

orthogonal grid, the formula can be written as: 

  !& = E#�8��4 ∙ �9���� + 4 ∙ ������ + 8 ∙ �2���� + E#*�4 ∙ �2���� = E���42#�8� + 16#*� 
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Summary 

The formulae for all three geometry variants are summarized in Table 9.1. 

 

“vertical columns” 2-D 3-D 

Racking shear stiffness "# = 4��ℎ #���  "# = 2 ∙ 4��ℎ #���  

Bending stiffness  ! = 10��E#*  ! = 44�� #* 

“diagonal columns”   

Racking shear stiffness "# = 2��ℎ #���  "# = 2 ∙ 2��ℎ #���  

Bending stiffness  ! = 5��E#�8�  ! = 42�� #�8� 

“diagonal & vertical columns”   

Racking shear stiffness "# = 2��ℎ #���  "# = 2 ∙ 2��ℎ #���  

Bending stiffness  ! =  ���5#�8� + 8#*�  ! =  ���42#�8� + 16#*� 

Table 9.1: Overview of the stiffness formulae per geometry variant. 

With 

 

#�8� = A ��
2 ∙ ℎ� ∙ #� + �9����

ℎ� ∙ #?BC9
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9.2 Load – deformation formulae 

 

To calculate the shear deflection and bending deflection by hand, formulae need to be derived as well. The 

starting points are that 16 concentrated loads are present with the same value and evenly distributed along 

the height.  

 

 

Figure 9.19: Load pattern on construction 

 

Bending deflection 

The bending deflection formula for a cantilevered rod with 16 concentrated loads can be derived with help of 

two existing formulae for a rod with one concentrated load at the top. 

 

The deflection at the top: 

 

+ = �G�
3 ! 

 

The rotation at the top: 

 

H = �G�
2 ! 

 

These 2 formulae need to be combined several times to derive the formula for a rod with 16 concentrated 

loads based on a cumulative principle: 

 +� = Σ�+� + H�G�� 

 

+I�����J = � ! �1 16K G�
3 + 1 16K G�

2 ∙ 9L9MG + 2 16K G�
3 + 2 16K G�

2 ∙ 9@9MG + 3 16K G�
3 + 3 16K G�

2 ∙ 9�9MG 

 

+  … … … + 15 16K G�
3 + 15 16K G�

2 ∙ 99M� 

 

+I�����J = 2 65384 �G�
 !  
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Shear deflection 

The shear deflection formula for a cantilevered rod with 16 concentrated loads can be derived with help of 

the existing formula for a rod with one concentrated load at the top: 

 

 

+ = �G"# 

 +� = Σ+�  

 

+�?�>� = 1"# P1 16K G ∙ � + 1 16K G ∙ 2� + 1 16K G ∙ 3� + … … … + 1 16K G ∙ 16�Q 

 

+�?�>� = 8 12 �G"# 

 

NB: The bending deflection and shear deflection formulae for a cantilevered rod under a uniformly distributed 

load (q) could have been used as well, and can be found in the literature easily. However, the formulae from 

the literature would yield a different outcome and therefore different deviations, that are not present with 

the derived formulae for the deflection. Hence, the derived formulae guarantee a more accurate result.  
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9.3 Differences hand & ESA PT calculations 

 

Now that the formulae for the EI and GA of the geometries are known, the hand results can be compared 

with the results of the discrete model computed by ESA PT. The deflection is split up into the bending 

deflection and the shear deflection to analyse the differences more exactly. All geometries are discussed at 

which the 2-dimensional construction and 3-dimensional construction are treated, respectively. 

To increase the reliability of the comparison, the sections of the structural members have been varied. 

However, the maximum difference between the sections has been limited to a factor 4. In other words, the 

section of the largest member is 4 times larger than the section of the smallest member. The factor 4 is based 

on the fact that it is not likely that the sections will differ more, due to the connections that need to be in 

proportion. The two sections that have been adopted are; 

 

CHS 457.0/40.0 A = 5.24·10
-2

 m
2
 O 

CHS 273.0/16.0 A = 1.29·10
-2

 m
2
 o 

 

 

Hand calculations 

For a better understanding, one example calculation is given below for the 

3-dimensional TFC variant “vertical columns” 

 

h = 5.25 m 

a = 7.5 m 

d = 9.15 m 

F = 2000 kN 

l = 168 m 

E = 2.1·10
8
 kN/m

2 

Averticals = 5.24·10
-2

 m
2
 

Adiagonals = 5.24·10
-2

 m
2
 

 

  ! = 44�� #* = 44 ∙ 7.5� ∙ 2.1 ∙ 10T ∙ 5.24 ∙ 10C� = 2.72 ∙ 109U VWX� 

 

+YZ = 2 65384 �G�
 ! = 2 65384 ∙ 2000 ∙ 168�

2.72 ∙ 109U = 755 ∙ 10C� X 

 

"# = 2 ∙ 4��ℎ #��� = 2 ∙ 4 ∙ 7.5� ∙ 5.25 ∙ 2.1 ∙ 10T ∙ 5.24 ∙ 10C�
9.15� = 3.39 ∙ 10\ VW 

 

+]^ = 8 12 �G"# = 8 12 ∙ 2000 ∙ 1683.39 ∙ 10\ = 84.3 ∙ 10C� X 

 +���>_ = 755 ∙ 10C� +  84.3 ∙ 10C� = 840 ∙ 10C� X = 840 XX 

 

ESA PT models 

The ESA PT models have been built so they resemble the hand models as closely as possible: naturally, the 

geometries match those of the hand calculations exactly. And all connections are hinged, to eliminate 

bending and shear in the members. 
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To distinguish the shear deflection and bending deflection, two models have been built: one that is only 

supported at the base to compute the total deflection, as illustrated in Figure 9.20; and another identical one, 

where the nodes can only undergo a horizontal movement to compute the shear deflection, as illustrated in 

Figure 9.21. The bending deflection is obtained by subtracting the shear deflection from the total deflection.  

 

  

Figure 9.20: ESA model for total deflection Figure 9.21: ESA model for shear deflection 
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TFC variant “vertical columns”  

 

  

Figure 9.22: 2-dimensional variant Figure 9.23: 3-dimensional variant 

 

A (m
2
)   δ Hand (mm) 

SCIA ESA PT 

(mm) 
difference 

Av = 5.24e-2 O δbending 1662 1645 1.0% 

Ad = 5.24e-2 O δshear 84.30 84.4 -0.1% 

    δtotal 1746 1729 1.0% 

Av = 1.29e-2 o δbending 6750 6683 1.0% 

Ad = 1.29e-2 o δshear 342.4 342.9 -0.1% 

    δtotal 7093 7026 0.9% 

Av = 1.29e-2 o δbending 6750 6591 2.4% 

Ad = 5.24e-2 O δshear 84.30 84.5 -0.2% 

    δtotal 6834 6676 2.3% 

Av = 5.24e-2 O δbending 1662 1661 0.0% 

Ad = 1.29e-2 o δshear 342.4 342.6 -0.1% 

    δtotal 2004 2004 0.0% 

Table 9.2: Differences 2-dimensional geometry variant “vertical columns”. 
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A (m
2
)   δ Hand (mm) 

SCIA ESA PT 

(mm) 
difference 

Av = 5.24e-2 O δbending 755 748 1.0% 

Ad = 5.24e-2 O δshear 84.30 84.4 -0.1% 

    δtotal 840 832.4 0.9% 

Av = 1.29e-2 o δbending 3068 3039 1.0% 

Ad = 1.29e-2 o δshear 342.4 342.9 -0.1% 

 
  δtotal 3411 3381.9 0.8% 

Av = 1.29e-2 o δbending 3068 2930 4.5% 

Ad = 5.24e-2 O δshear 84.30 84.5 -0.2% 

    δtotal 3153 3014.5 4.4% 

Av = 5.24e-2 O δbending 755 794 -5.1% 

Ad = 1.29e-2 o δshear 342.4 342.6 -0.1% 

    δtotal 1098 1136.6 -3.5% 

Table 9.3: Differences 3-dimensional geometry variant “vertical columns”. 

 

TFC variant “vertical columns”  

Regarding the 2-dimensional variant; in case 1 and 2 where the verticals and diagonals have equal sections, 

the deflection only differs marginally where the computer calculation yields a higher value. Yet, this 

difference can be understood from the results from the 3
rd

 and 4
th

 comparison where the influence of the 

diagonals is becomes clear: In case the diagonals have a large section and the verticals a small section, the 

hand calculation gives a greater deflection which can be primarily attributed to the bending deflection. In 

other words, the bending stiffness calculated via the mechanics formula is smaller. This result can be ascribed 

to the influence of the diagonals that has been discarded for the bending stiffness: when the verticals 

shorten, the diagonals have to shorten as well and will provide a certain resistance, depending on their tensile 

rigidity, as illustrated in Figure 9.24.  

 

This means that if the diagonals have relatively large sections compared to the verticals, the tensile rigidity 

and thus the bending stiffness of the 2-dimensional construction increases. In case the diagonals have a small 

section and the verticals a large section, the hand and computer calculation give nearly the same answer. This 

 

Figure 9.24: Contribution of the diagonal due to its shortening 
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can be explained by the inversing the abovementioned phenomenon: since the section of the diagonals is 

relatively small, their influence on the tensile rigidity and thus the bending stiffness can be neglected.  

Looking at the comparison for the 3-dimensional construction, the differences for the 1
st

 and 2
nd

 case are also 

small. In the 3
rd

 and 4
th

 case, a similar behaviour is found as for the 2-dimensional construction: if the 

diagonals have a larger section than the verticals, their contribution in the bending stiffness becomes more 

apparent. However, the difference in percentages is larger for the 3-dimensional than for the 2-dimensional 

construction, 2.4% and 4.5% in the 3
rd

 case, respectively. This prolific augmentation can be explained in view 

of the stress distribution in a tube construction compared to that in a trussed frame: in a tube construction, 

the tensile rigidity plays a relatively more important role due to the two “flanges” that are activated. 

Therefore the influence of the diagonals increases as well. 

 

Summary: the approximation for the shear deflection of the geometry is nearly exact in all cases. However, 

the bending deflection varies when calculated by hand and computer. These differences are correlated with 

the influence of the diagonals on the bending stiffness which is neglected in the mechanics formulae. 
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TFC variant “diagonal columns”  

 

  

Figure 9.25: 2-dimensional variant Figure 9.26: 3-dimensional variant 

 

A (m
2
)   δ Hand (mm) 

SCIA ESA PT 

(mm) 
difference 

Ah = 5.24e-2 O δbending 2141 2102 1.8% 

Ad = 5.24e-2 O δshear 152.3 153 -0.5% 

    δtotal 2293 2255 1.7% 

Ah = 1.29e-2 O δbending 8695 8539 1.8% 

Ad = 1.29e-2 O δshear 618.5 619.3 -0.1% 

 
  δtotal 9314 9158 1.7% 

Ah = 1.29e-2 O δbending 2604 2393 8.1% 

Ad = 5.24e-2 O δshear 152.3 153 -0.5% 

    δtotal 2756 2546 7.6% 

Ah = 5.24e-2 O δbending 8232 8211 0.3% 

Ad = 1.29e-2 O δshear 618.5 618.7 0.0% 

    δtotal 8850 8830 0.2% 

Table 9.4: Differences 2-dimensional geometry variant “diagonal columns”. 
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A (m
2
)   δ Hand (mm) 

SCIA ESA PT 

(mm) 
difference 

Ah = 5.24e-2 O δbending 510 516.3 -1.3% 

Ad = 5.24e-2 O δshear 152.3 152.5 -0.2% 

    δtotal 662 668.8 -1.0% 

Ah = 1.29e-2 O δbending 2070 2099 -1.4% 

Ad = 1.29e-2 O δshear 618.5 619.3 -0.1% 

 
  δtotal 2689 2718 -1.1% 

Ah = 1.29e-2 O δbending 620 569.9 8.1% 

Ad = 5.24e-2 O δshear 152.3 153 -0.5% 

    δtotal 772 722.9 6.4% 

Ah = 5.24e-2 O δbending 1960 2031 -3.6% 

Ad = 1.29e-2 O δshear 618.5 618.7 0.0% 

    δtotal 2578 2650 -2.8% 

Table 9.5: Differences 3-dimensional geometry variant “diagonal columns”. 

 

Regarding the 2-dimensional variant; in the 1
st

 and 2
nd

 case the differences are relatively small. Yet in the 3
rd

 

case the difference is substantial, which can be subscribed to the difference in bending deflection: the 

bending deflection calculated by ESA PT is smaller, meaning a larger bending stiffness. This effect can be 

explained by the fact that horizontal displacements at the base of the computer model are restricted. 

Indirectly, this is translated into an increased bending stiffness of the bottom part; the bottom part is the 

most important to limit the deflection at the top, hence the relatively large effect of 8.1%. This phenomenon 

is apparent in the 3
rd

 case where the horizontals have a small section and the diagonals a large section. In the 

4
th

 case, where the sections are inversed, the differences are marginal: the horizontal displacements – and 

thus of the deforming of the rhomboids – are restricted by the relatively large sections of the horizontals. 

 

 

Figure 9.27: Restricted versus free movement at the base 

 

Overall, the deflection calculated by computer is smaller for the 2-dimensional construction in all 4 cases due 

to a larger bending stiffness. The larger bending stiffness can be explained by the fact that the base of 

computer model has a larger width, whereas the hand calculation is based on the width between the lines of 

action, as illustrated in Figure 9.28 and Figure 9.29. If the model was infinitely tall, the results from the hand 

and the computer calculations would converge. 
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Figure 9.28: Effective width at the base of the computer 

model 

Figure 9.29: Effective width at the base of the hand 

calculations 

 

Looking at the comparison for the 3-dimensional construction, the differences for the 1
st

 and 2
nd

 case are also 

small. Similarly, in the 3
rd

 case the effect of the restricted movement for the computer model also results in a 

smaller deflection at the top. The effect of the greater width of the base and hence a greater bending stiffness 

is marginalized due to the floor plan with a square perimeter. 

 

Additionally, the conclusion that can be drawn from the comparison is that the horizontal members every 

sixth storey – where the construction is at the smallest – do not actually contribute to the shear or bending 

stiffness: they have not been included in the hand calculation, though they are present in the ESA models. To 

verify their contribution, the secondary horizontal in the ESA models have been left out and the deflections 

have been computed again. 

 

 

Figure 9.30: Omitted secondary horizontals in geometry variant “diagonal columns” 

 

A (m
2
) 

 
δ Hand (mm) 

SCIA ESA PT (mm) 

(without sec. hor.) 
difference 

SCIA ESA PT 

(mm) 

Ah = 5.24e-2 O δbending 2141 2107 1.6% 2102 

Ad = 5.24e-2 O δshear 152.3 152.5 -0.2% 153 

  
δtotal 2293 2260 1.5% 2255 

 

Secondary horizontals 
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A (m
2
)   δ Hand (mm) 

SCIA ESA PT (mm)  

(without sec. hor.) 
difference 

SCIA ESA PT 

(mm) 

Ah = 5.24e-2 O δbending 510 520.8 -2.2% 516.3 

Ad = 5.24e-2 O δshear 152.3 152.5 -0.2% 152.5 

  
δtotal 662 673.3 -1.7% 668.8 

 

The computer results calculated with the new models without secondary horizontals are compared with the 

original hand calculations and the differences are shown. This has been done for the 2-dimensional and the 3-

dimensional construction without any variation in the sections. The right column shows the initial results from 

the ESA models with the secondary horizontals still present. The comparison proves that the secondary 

horizontals do not contribute to the rigidity and can be left out.  

 

Summary: the approximation for the shear deflection of the geometry is nearly exact in all cases. However, 

the bending deflection varies when calculated by hand and computer. These differences are correlated with 

the influence of the restricted movements and a different effective width at the base of the model on the 

bending stiffness. Furthermore, the comparison showed that the secondary horizontals can be omitted. 
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TFC variant “diagonal & vertical columns”  

 

  

Figure 9.31: 2-dimensional variant Figure 9.32: 3-dimensional variant 

 

A (m
2
)   δ Hand (mm) 

SCIA ESA PT 

(mm) 
difference 

Ah = 5.24e-2 O δbending 1054 1039 1.4% 

Ad = 5.24e-2 O δshear 152.3 153 -0.5% 

Av = 5.24e-2 O δtotal 1206 1192 1.2% 

Ah = 1.29e-2 o δbending 4282 4223 1.4% 

Ad = 1.29e-2 o δshear 618.5 619.3 -0.1% 

Av = 1.29e-2 o δtotal 4901 4842 1.2% 

Ah = 5.24e-2 O δbending 1707 1679 1.7% 

Ad = 5.24e-2 O δshear 152.3 152.5 -0.2% 

Av = 1.29e-2 o δtotal 1860 1832 1.5% 

Ah = 1.29e-2 o δbending 1156 1104 4.5% 

Ad = 5.24e-2 O δshear 152.3 153 -0.5% 

Av = 5.24e-2 O δtotal 1308 1257 3.9% 

Ah = 5.24e-2 O δbending 1659 1645 0.8% 

Ad = 1.29e-2 o δshear 618.5 618.7 0.0% 

Av = 5.24e-2 O δtotal 2277 2264 0.6% 

Ah = 5.24e-2 O δbending 4167 4142 0.6% 

Ad = 1.29e-2 o δshear 618.5 618.7 0.0% 

Av = 1.29e-2 o δtotal 4785 4761 0.5% 
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Ah = 1.29e-2 o δbending 1990 1858 6.6% 

Ad = 5.24e-2 O δshear 152.3 153 -0.5% 

Av = 1.29e-2 o δtotal 2142 2011 6.1% 

Ah = 1.29e-2 o δbending 1677 1658 1.1% 

Ad = 1.29e-2 o δshear 618.5 619.3 -0.1% 

Av = 5.24e-2 O δtotal 2295 2277 0.8% 

Table 9.6: Differences 2-dimensional geometry variant “diagonal & vertical columns”. 

 

A (m
2
)   δ Hand (mm) 

SCIA ESA PT 

(mm) 
difference 

Ah = 5.24e-2 O δbending 409 412.5 -0.8% 

Ad = 5.24e-2 O δshear 152.3 152.5 -0.2% 

Av = 5.24e-2 O δtotal 562 565 -0.6% 

Ah = 1.29e-2 o δbending 1662 1677 -0.9% 

Ad = 1.29e-2 o δshear 618.5 619.3 -0.1% 

Av = 1.29e-2 o δtotal 2281 2296 -0.7% 

Ah = 5.24e-2 O δbending 481 468.5 2.5% 

Ad = 5.24e-2 O δshear 152.3 152.5 -0.2% 

Av = 1.29e-2 o δtotal 633 621 1.9% 

Ah = 1.29e-2 o δbending 477 445.8 6.6% 

Ad = 5.24e-2 O δshear 152.3 153 -0.5% 

Av = 5.24e-2 O δtotal 630 598.8 4.9% 

Ah = 5.24e-2 O δbending 1008 1021 -1.2% 

Ad = 1.29e-2 o δshear 618.5 618.7 0.0% 

Av = 5.24e-2 O δtotal 1627 1640 -0.8% 

Ah = 5.24e-2 O δbending 1590 1633 -2.7% 

Ad = 1.29e-2 o δshear 618.5 618.7 0.0% 

Av = 1.29e-2 o δtotal 2209 2252 -1.9% 

Ah = 1.29e-2 o δbending 578 533.4 7.6% 

Ad = 5.24e-2 O δshear 152.3 153 -0.5% 

Av = 1.29e-2 o δtotal 730 686.4 6.0% 

Ah = 1.29e-2 o δbending 1037 1039 -0.2% 

Ad = 1.29e-2 o δshear 618.5 619.3 -0.1% 

Av = 5.24e-2 O δtotal 1655 1658 -0.2% 

Table 9.7: Differences 3-dimensional geometry variant “diagonal & vertical columns”. 
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Regarding the 2-dimensional variant; in all cases the differences are marginal except for the 4
th

 and 7th case. 

In both cases, the horizontals have small sections and the diagonals have large sections – while the vertical 

section is large and small respectively. The explanation can be found in the same effect as for the geometry 

variant “diagonal columns”, where the movements at the base of the computer model are restricted yielding 

a smaller deflection. However the difference is less significant for this geometry variant since the vertical 

columns – which are not affected by the restricted movement – also contribute in the bending stiffness.  

Regarding the 3-dimensional variant; the differences are marginal except for the 4
th

 and 7
th

 case – just as for 

the 2-dimensional variant. The differences can be explained in the same way as for the 2-dimensional 

construction. 

 

 

 

Additionally, the conclusion that can be drawn from the comparison is that the horizontal members every 

sixth storey – where the construction is at the smallest – do not actually contribute to the shear or bending 

stiffness: they have not been included in the hand calculation, though they are present in the ESA models. To 

verify their contribution, the secondary horizontal in the ESA models have been left out and the deflections 

have been computed again. 

 

A (m
2
)   δ Hand (mm) 

SCIA ESA PT (mm) 

(without sec. hor.) 
difference 

SCIA ESA PT 

(mm) 

Ah = 5.24e-2 O δbending 1054 1040 1.3% 1039 

Ad = 5.24e-2 O δshear 152.3 152.5 -0.2% 153 

Av = 5.24e-2 O δtotal 1206 1193 1.2% 1192 

 

A (m
2
)   δ Hand (mm) 

SCIA ESA PT (mm)  

(without sec. hor.) 
difference 

SCIA ESA PT 

(mm) 

Ah = 5.24e-2 O δbending 409 415.3 -1.5% 412.5 

Ad = 5.24e-2 O δshear 152.3 152.5 -0.2% 152.5 

Av = 5.24e-2 O δtotal 562 567.8 -1.1% 565 

 

The computer results calculated with the new models without secondary horizontals are compared with the 

original hand calculations and the differences are shown. This has been done for the 2-dimensional and the 3-

dimensional construction without any variation in the sections. The right column shows the initial results from 

 

Figure 9.33: Omitted secondary horizontals in geometry variant “diagonal & vertical columns” 

Secondary horizontals 
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the ESA models with the secondary horizontals still present. The comparison proves that the secondary 

horizontals do not contribute to the rigidity and can be left out.  

 

Summary: the approximation for the shear deflection of the geometry is nearly exact in all cases. However, 

the bending deflection varies when calculated by hand and computer. These differences are correlated with 

the influence of the restricted movements and a different effective width at the base of the model on the 

bending stiffness. Furthermore, the comparison showed that the secondary horizontals can be omitted. 

 

General conclusion 

The hand calculations, based on the mechanics formulae, give a good approximation of the reality. The 

calculated shear deflection is an accurate approach while the bending deflection still shows some deviations. 

However, the order of these deviations is minor and, more important, can be estimated based on the 

comparison with the computer results for different sections. Therefore, the mechanics formulae seem reliable 

and a good base for the further design calculations. 

 

  


